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1. Introduction

A response of a physical system that is localized to some portion of a distinguished
coordinate (either space or time) is surely the next most fundamental state after
homogeneous equilibrium and periodicity. This collection of original research arti-
cles is dedicated to the description and analysis of spatially localized waves in solid
mechanics. While acknowledging that sharply discontinuous localizations are also of
physical importance, we concentrate here on those that arise as a balance between
two conflicting influences, one pinching and the other dispersive, such that they are
spread over a finite spatial domain—akin to plastic necking, for example, rather
than brittle fracture. Applications range from the folding of geological strata and
the buckling of cylindrical shells, twisted rods and pipelines, to the propagation of
travelling solitary waves in suspended beam systems. All may be described by a new
breed of mathematical theories based on the analysis of homoclinic solutions of dif-
ferential equations posed on an infinite length scale. In truth no material length is
infinite, but it sometimes makes sense to assume that a system sits within an infinite
domain; this recognizes that if it is ‘long enough’, the significance of the boundary
conditions is often swamped by the homoclinic influence.

The key to this form of localization is that the processes in question should be
nonlinear. In elastic buckling studies for example (see the contribution of Lord et al.
on cylindrical shells), classical linear theory describes buckling via a critical (spatial-
ly periodic) eigenmode associated with a zero eigenvalue. However the buckling of
shells is markedly sub-critical so that buckling usually occurs via a violent jump to
a finite amplitude state. Nonlinearities are then crucial in determining the shape of
the post-buckled state, and a spatially localized form is more likely to be adopted
because it requires less energy than a fully periodic one (see Hunt et al. (1989) for
a more detailed argument along these lines). There is indeed a great deal of exper-
imental evidence for localized buckling; see the references in the contributions by
Champneys et al. and Lord et al. A key point is that such localization does not nec-
essarily arise from localized imperfections, but exists as a solution of the underlying
(perfect) differential equation. Imperfections do however have a role in breaking the
translational invariance associated with homoclinic behaviour, and hence in deciding
where the localization will be centred.

A solitary wave is another form of localized phenomenon when viewed in a coor-
dinate system that travels at the wave speed. A classical example is a solution of
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Figure 1. (a) Simple pendulum. (b) Strut element.

the Korteweg de Vries (KdV) equation (Korteweg & de Vries 1895) which was first
derived to describe the observation by Scott Russell in 1834 of a solitary water wave
travelling along a canal. Specifically, the KdV equation may be written as

ut + 6uux + uxxx = 0. (1.1)

Moving to a travelling coordinate frame by writing ξ = x + ct, and taking a first
integral leads to the ordinary differential equation

uξξ + cu+ 3u2 = 0, (1.2)

which has a solitary wave solution u = −(1
2c)sech2( 1

2

√−cξ) for c < 0. Loosely speak-
ing, solitary waves are born in a balance between dispersive effects (the uxxx term in
(1.1), acting to spread the response in x) and those that act to (thoroughly) local-
ize or pinch (the nonlinear amplitude-dependent combination of ut and uux terms).
Solitary wave solutions of the KdV equation and the related nonlinear Schrödinger
(NLS) equation have been of much interest in recent years, attracting the name ‘soli-
ton’ for their remarkable particle-like properties. Solitons are found to be very stable
and able to pass through one another with only a shift in phase. There is now a rich
theory of solitons based on the completely integrable structure of the KdV, NLS and
related equations (see, for example, Ablowitz & Clarkson 1991). Solitons also arise in
applications including travelling waves of rods and beams (see, for example, Slepyan
et al. (1995) and the reference list of Kehrbaum & Maddocks). However, such inte-
grable systems are not of much concern in this issue. One of our aims is to show that
solitary waves of non-integrable systems lead to even more interesting mathematics,
with many open questions. Indeed, the contribution by Chen & McKenna suggests
that solitary waves of a certain fourth-order hyperbolic equation share some of the
remarkable interaction properties of solitons, without the system appearing to be
completely integrable.

It is not altogether surprising that equation (1.2) appears in a coordinate sys-
tem that combines space and time, since identical equations can be found in each
independently. Consider for example the (dimensionless) equation for the frictionless
simple pendulum of figure 1a,

θtt = − sin(θ), (1.3)
where θ(t) is the angle of swing. Solving this with initial conditions corresponding
to the pendulum pointing downwards with exactly the right velocity to reach the
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top, {θ(0), θ̇(0)} = {0, 2}, leads to a homoclinic solution with θ(t)→ π as t→ ±∞.
Similarly, the spatial equilibrium configuration of the planar elastica of figure 1b,
corresponding to an axially compressed elastic strut or column, can be described in
terms of the angular deformation θ of the arc-length s along its centreline. After
non-dimensionalization, a force balance leads to the equilibrium equation

θss = − sin(θ). (1.4)

Hence spatial equilibrium solutions of an infinitely long elastic strut (the elastica) are
in one-to-one correspondence with motions of a simple pendulum, with the homo-
clinic orbit of the pendulum corresponding to a localized loop of the elastica. This
analogy between spatial and temporal problems dates back to Kirchhoff (1859); see
Thompson & Virgin (1988) and the contribution of Domokos for more details. It
occurs also in the simplest model of torsional rod buckling, as discussed in detail
by Kehrbaum & Maddocks, where the equivalent dynamical problem is that of a
spinning top.

If the sin(θ) in (1.3) is replaced by the first two terms in the Taylor expansion
of a more general nonlinear restoring force, then the quadratic Duffing equation is
obtained:

θtt + θ + 1
2θ

2 = 0. (1.5)
This has been used (with the addition of damping and forcing terms) to describe a
range of nonlinear oscillations, for example ship capsize (Thompson 1996, 1997). In
these studies, the bifurcations caused by the homoclinic orbit of (1.5) are shown to
play an organizing role for chaotic dynamics and for basins of attraction of competing
stable motions. Observe however, that apart from a scaling factor for the nonlinear
term, (1.5) is identical to the travelling wave KdV equation (1.2). The variables have
totally different meanings, but the homoclinic solution is important for both models,
albeit for different reasons.

Another essential ingredient of the localization described in this issue, is that it
typically occurs in systems for which there is some form of energy conservation. Such
problems can often be posed in a variational formulation, leading via Euler–Lagrange
equations to differential equations which are Hamiltonian (the analogue of a classical
mechanical system described in terms of generalized coordinates and momenta).
Reversibility (Devaney 1976b) is also a common feature of many of the differential
equations. A recurring theme will be homoclinic orbits of reversible Hamiltonian
systems of two degree of freedom. An archetype of such a system is the fourth-order
equation

uxxxx + Puxx + u = f(u), (1.6)
where P is a parameter and f(u) is a nonlinear function. The contribution by Sand-
stede considers this as a model for a compressed strut resting on a nonlinear elastic
foundation. Chen & McKenna and Hunt & Blackmore take f(u) to be piecewise
linear, respectively, as a model for solitary waves of a suspended beam with zero
stiffness once the suspension device goes slack and as a model for the equilibrium
configuration of a pipeline which is free to lift off from a compressible foundation.

Equations such as (1.6) are known to admit infinitely many multi-modal homoclin-
ic orbits, effectively comprising copies of a primary sech-like solution glued together
at different separations (Champneys & Toland 1993). The key to the infinite multi-
plicity is that (for −2 < P < 2) the linearization at the trivial equilibrium of (1.6)
has four complex eigenvalues; in this context it was proved by Devaney (1976a) that
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the existence of one non-degenerate homoclinic orbit implies chaos. For the kind
of applications that we have in mind, this implies that multitudinous equilibrium
solutions exist, all of which can satisfy imposed boundary conditions (see the contri-
bution of Champneys et al. and references therein in the context of ‘spatially chaotic’
equilibrium configurations of twisted rods).

One of the practical messages of the issue is thus directed at numerical computa-
tion. It is argued that if localized solutions are required, numerical methods specif-
ically designed for such purposes should be used. Straightforward ‘black box’ finite
element analysis for example is likely to miss the solutions of practical significance,
in the chaotic mêlée (see Hunt et al. (1997) for a more detailed discussion). The key
to computing localized solutions with minimum error over a truncated interval is to
prescribe boundary conditions that force decay at x = ±∞ with the right asymp-
totics (Beyn 1990; Friedman & Doedel 1991). Such an approach is adopted by many
of the contributors below. Another interesting aspect of the numerical computation
of localization is the possibility of the destruction or spurious creation of extra local-
ized solutions under numerical discretization. The contribution of Domokos discusses
this topic applied to the classical Euler strut problem (see also Fiedler & Scheurle
(1996) for some interesting theoretical results).

As well as questions of existence and computation, those of stability are at least
partially addressed. While one of the aims of this issue is to show that there is now
some general theory for the first two of these, stability is apparently more context
dependent. Sandstede for example considers the localized bucking pulses of (1.6) as an
elastic strut model; stability is then determined by the second variation of the energy
functional. For the travelling wave problem of Chen & McKenna it is governed by
the full time-dependent partial differential equations (PDEs). In that of Hunt et al.,
on geological strata, stability must be taken in a pseudo (secular) sense appropriate
for slow evolution over time. Sandstede also discusses quite general conditions under
which multi-modal homoclinic solutions, arising in a number of the models in this
issue, may be stable.

For the sake of brevity, we have concentrated in this issue on localized phenomena
in solid mechanics. However, localization of this kind appears important in many
other disciplines as well. To mention just a few examples aside from the present
applications, equation (1.6) with various nonlinear terms f(u) arises in the descrip-
tion of solitary light pulses (see, for example, Buryak & Akhmediev 1995), of solitary
water waves with surface tension (Buffoni et al. 1996) and in the governing of pat-
tern formation (Peletier & Troy 1996). See Champneys (1997) for a more thorough
review.

An issue of this nature cannot give a general picture. It is not a text book—rather
it is a series of snapshots. Nevertheless we hope these give some guide to current and
future directions of research in the topic of localization, of use to theoretician and
practitioner alike.
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